perm filename PAPER.TEX[DGF,TEX] blob
sn#569428 filedate 1981-02-26 generic text, type T, neo UTF8
00100 \input basic
00200 \ctrline{\bf Exact expressions for ground range and its derivative}
00300 \ctrline{\bf with respect to elevation angle for a}
00400 \ctrline{\bf Bradley-Dudeney model ionosphere}
00500 \vskip 5pt
00600 \ctrline {\sl L. Ortenburger}
00700 \vskip 10pt
00800
00900 By using a quasi-parabolic and quasi-linear approximation to the
01000 variation of electron concentration with height in the
01100 Bradley-Dudeney$↑1$
01200 ionospheric model,
01300 Milson$↑2$ obtained the exact expressions for ground range as a
01400 function of the wave frequency; elevation angle; the F2 region
01500 parameters of maximum electron concentration $(N↓mF2)$, height of
01600 this maximum concentration $(h↓mE)$, and the region (parabolic)
01700 semi-thickness $(y↓mE)$.
01800
01900 These were derived from the basic ground range equation for a curved
02000 earth-curved ionosphere geometry in which the effects of electron
02100 collisions, positive ions, and the magnetic field are ignored:
00100
00200 $$D=2r↓0\int↓{r↓0}↑{r↓t}{dr \over r\, tan\beta}
00300 =2\int↑{r↓t}↓{r↓0}{r↓0↑2 cos\beta↓0\,dr \over
00400 r\sqrt{r↑2\mu↑2(r)-r↑2↓0cos↑2\beta↓0}}$$
00500 where
00510 $$\eqalign{D ⊗= ground\ range\ (km)\cr
00520 r↓0 ⊗= radius\ of\ the\ earth\ (km)\cr
00530 r↓t ⊗= radial\ distance\ to\ the\ ray\ apogee\ (km)
00535 \cr
00540 \beta ⊗= elevation angle\cr
00550 \beta ↓0 ⊗= initial angle of the ray at the earth surface\cr
00560 \mu(r) ⊗= refractive index at a radius of r km\cr}$$
00570
00580 Milson defined four sections of the ray-path from the ground to the
00590 apogee point:
00600
00700 \vfill\end